
Traffic Flow Monitoring in Crowded Cities

John A. Quinn and Rose Nakibuule
Faculty of Computing & I.T.

Makerere University
P.O. Box 7062, Kampala, Uganda
{jquinn,rnakibuule}@cit.mak.ac.ug

Abstract

Traffic monitoring systems usually make assumptions
about the movement of vehicles, such as that they drive
in dedicated lanes, and that those lanes rarely include
non-vehicle clutter. Urban settings within developing
countries often present extremely chaotic traffic scenar-
ios which make these assumptions unrealistic. We show
how a standard approach to traffic monitoring can be
made more robust by using probabilistic inference, and
in such a way that we bypass the need for vehicle seg-
mentation. Instead of tracking individual vehicles but
treat a lane of traffic as a fluid and estimate the rate of
flow. Our modelling of uncertainty allows us to accu-
rately monitor traffic flow even in the presence of sub-
stantial clutter.

Introduction
Traffic congestion is a problem in many developing world
cities where road infrastructure is inadequate. The problem
is compounded by a lack of real time information on traf-
fic flows in a city, and a lack of facilities for optimising this
flow (traffic lights and police manpower). In this paper we
address the problem of gaining real-time data on conges-
tion levels around a heavily congested city using computer
vision. CCTV networks are in place in many such cities,
motivated by security concerns, but under ordinary circum-
stances there is often a lack of sufficient staff to fully pro-
cess data. Kampala, for example, has a network of around
50 CCTV cameras in the city centre.

Computer vision work on traffic monitoring usually as-
sumes a constrained and clutter-free environment such as a
highway, where cars move uniformly within separate lanes.
In some situations, for example in many cities in the de-
veloping world, extremely chaotic traffic conditions make
such assumptions unrealistic. Traffic monitoring is usually
done in two stages: estimation of road geometry and track-
ing of vehicles. We can make both these processes robust by
incoporating our uncertainty into a probabilistic dynamical
model.

Figure 1 illustrates some typical, challenging scenarios
for automated traffic monitoring – in particular extreme con-
gestion and the presence of distracting visual features in the
scene. Our approach to traffic monitoring differs from other
systems in two main respects. First, we learn a model for

Figure 1: Typical, challenging traffic monitoring scenarios
in Kampala, a developing-world city. The left panel shows
an area near the entrance of a minibus taxi interchange,
while the right panel shows an example of animals loose on
the road.

classifying vehicles and visual clutter tailored to these con-
ditions. Second, we do not attempt to track individual ve-
hicles, which would be very difficult in the situations we
consider. Instead we characterise a lane of traffic as a fluid
and quantify the flow rate.

Our long term aim is to derive a real-time congestion map
of the city. Such work helps police to know how to redi-
rect traffic to optimise the available capacity, and which lo-
cations are priorities for dispatching traffic officers. This
processing therefore helps to make the most of scarce in-
frastructure, using hardware which is already in place and
currently under-utilised. For road users, such information
would help in journey planning, thus reducing the economic
penalty experienced by businesses associated with transport
on inadequate roads.

In the next section we review existing work on traffic
monitoring, generally designed for developed-world condi-
tions. We then discuss techniques for assessing vehicle flow
using feature transforms of the video frames. The flows
are then used to calculate road geometry, and we describe a
probabilistic dynamical model for inferring the overall rate
of flow given observations.

Related Work
Automated traffic monitoring usually breaks down into two
tasks: estimation of road geometry and tracking of vehi-
cles. Much of the previous work on this has been reviewed
by (Kastrinaki, Zervakis, and Kalaitzakis 2003). What this

work has in common is the fact that individual vehicles are
generally tracked. This necessarily involves segmenting in-
dividual vehicles in each frame, which brings up issues such
as shadow detection and then need for sophisticated schemes
to deal with occlusion. Previous work generally assumes a
highway or other ideal environment where the only moving
objects are the vehicles we wish to monitor, and the way in
which they move is constrained, for example within specific
lanes on the road.

The work in (Maurin, Masoud, and Papanikolopoulos
2002; 2005) is aimed at monitoring crowded urban scenes,
including vehicles, pedestrians and cyclists. This work
is again based on segmentation and tracking every object,
without classifying the types of objects which are tracked.
Vehicles are classified in the work of (Messelodi, Modena,
and Zanin 2005) based on a 3D profile, and in the work of
(Zhang, Fang, and Yang 2005) based on motion models to
distinguish traffic from background movement, such as the
motion of swaying trees in the background. A number of
vehicle classification schemes are reviewed in (Sun, Bebis,
and Miller 2006) from the perspective of an in-car monitor-
ing system intended to alert the driver to obstacles. Again
this work focuses in the segmentation of vehicles.

Our work attempts to make inferences about flow based
on corresponding features across consecutive frames in
a traffic video stream, without requiring segmentation or
tracking. There has been some previous work along these
lines (Porikli and Li 2004; Tan and Chen 2007) using hid-
den Markov model based classification of traffic, though in
both cases assuming road conditions without clutter. For
some background on analysing flow through feature extrac-
tion, see (Posta et al. 2003).

Feature flow
Given a video stream of traffic, our first step is to take pairs
of video frames and calculate the correspondence between
the two, so that we can obtain flow vectors corresponding to
every moving object. The approaches normally used for do-
ing this are known as optic flow (calculating a flow vector for
every pixel in the frame) and feature flow (calculating flow
vectors only for points at which feature descriptors match
between frames). We use the latter as it has advantages both
in terms of speed and incorporation into object recognition,
as explained in the next section. We use scale invariant fea-
ture transform (SIFT) keypoints (Lowe 2004) to identify the
correspondences between frames. SIFT keypoints are vec-
tors (usually 128-dimensional) which describe a visual fea-
ture in a representation which is invariant to rotation and
scaling, and partially invariant to illumination changes and
affine transformations. Keypoints are identified by applying
difference of Gaussian convolutions to an image at different
scales and looking for stable maxima and minima. The de-
scriptors are then created based on local gradient data around
the point of interest.

By calculating SIFT keypoints for two consecutive frames
in a video sequence, we can match pairs of features by look-
ing at Euclidean distance between them and then see which
parts of the frame are moving and which are stationary.

(a)

(b)

Figure 2: Flow vectors between current and previous frames
in different traffic video sequences. (a) All feature flow vec-
tors in a scene, (b) flow vectors classified as vehicles only.

Figure 2(a) shows all flow vectors between the current and
previous frames in part of a traffic sequence, where frames
are 1

3 of a second apart. This includes the flows of pedestri-
ans and other categories of object such as motorcycles. To
determine where the road and vehicles are, we need to know
which of these features are significant. We therefore have to
filter out the flow vectors associated with clutter.

Recognising vehicles
To distinguish different types of moving objects, we col-
lected a database of training images, with 363 images of
vehicles from different aspects, and 573 images of clutter
on the road (e.g. pedestrians, motorcycles, background ob-
jects). Examples of training images from each class are
shown in Figure 3. From these we obtained 55,764 ve-
hicle keypoint descriptors and 49,671 clutter keypoint de-
scriptors. For computational efficiency we reduced these
keypoints down to a set 900 canonical descriptors using k-
means clustering.

In Figure 5 we show keypoint matches from a training
image of a vehicle to a test image in a similar perspective.

As well as looking at matching keypoint descriptors, it is
also possible to use the length of a flow vector in classifying
whether that flow is due to a vehicle or another type of ob-
ject. We formulate a likelihood function p(l|t), where l is the
flow length in pixel units and t ∈ {vehicle, clutter}. We pa-
rameterise p(l|vehicle) as a Gaussian distribution, whereas
we set p(l|clutter) to be an exponential decay plus a con-

Figure 3: Examples of training image patches for vehicle
and clutter classes.

stant, as shown in Figure 4. We set the parameters heuris-
tically depending on the distribution of flow displacements
found in each pair of frames. Clutter or background is most
likely to be stationary or moving at low speed, though an
object is also likely to be clutter if it is moving significantly
faster than the vehicles in the scene (for example motorcy-
cles moving quickly through gridlocked traffic). Vehicles
may be stationary, but are more likely to move with some
velocity.

Taking the matches from the feature flow, we cluster fea-
tures together based on their position and velocity, again us-
ing k-means. Each cluster normally contains flow vectors
from a single moving object, and we can take this group of
keypoints and classify them. For each cluster of features, we
can make a classification of whether it is a vehicle or clutter
using Bayes rule with assumptions of conditional indepen-
dence between the features (Naive Bayes), such that

p(t|k1, . . . , kn, v) ∝ p(k1|t)×· · ·× p(kn|t)p(v|t)p(t) (1)

p(t = vehicle|k1:n, v) + p(t = clutter|k1:n, v) = 1 (2)
where k1:n are the keypoint descriptors in the cluster.

Algorithm 1 Calculation of vehicle flow vectors

1. Calculate feature flows for a consecutive pair of frames.
2. Cluster the flows using k-means to approximately group

the flows corresponding to the same object.
3. Calculate the nearest neighbour to each feature descriptor

from the training descriptors.
4. Calculate the likelihood for the flow velocity.
5. Use Naive Bayes to classify each group of flows.
6. For the clusters classified as vehicles, return the mean po-

sition and velocity as a vehicle flow vector.

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

Length of feature flow in pixels (l)

p(
l|c

la
ss

)

class=‘‘vehicle’’
class=‘‘clutter’’

Figure 4: Likelihoods of inter-frame feature displacement
lengths for different classes of flow.

Figure 5: Keypoint matches from a vehicle training image
to part of a video frame.

The likelihood terms p(ki|t) are determined according to
whether the nearest neighbour to ki in the set of training de-
scriptors belongs to the same class t or not. In this way we
obtain a set of flow vectors corresponding to vehicles mov-
ing within the scene, for example by thresholding at 0.5. We
do not try to segment or count individual vehicles. Figure
2(b) shows flow vectors in a scene which have been classi-
fied as vehicles (note that we regard motorcycles as clutter
because their movements tend to be erratic).

Note that the form of the calculation in Eq. (1) makes
it easy to add any number of other features for classifica-
tion, such as colour histogram or morphological features, as
long as we can in some way formulate the likelihood term
p(feature|t).

Inferring observation geometry
Due to perspective and road layout, it does not make sense
to simply average the velocity of the vehicle flow vectors.
We assume that at each time frame there is a overall flow
rate ft, and that the velocity of each flow vector we observe
is proportional to this flow rate, scaled by some constant. At
any point o in the observable field O (such that o ∈ O ∈
R2), we therefore need to know the scaling µ(o) ∈ R+.

For this task we use Gaussian process regression. We
specify that the covariance between any two points o and
o′ is given by the function k(o,o′). In these experiments we
parameterise k(·, ·) as a squared exponential function with
isotropic noise representing the variance in the observations.

From a sequence of training data, we calculate the vehicle
flows as described in the previous section, then use the ve-
locity and positions of these flows as training data. GP re-
gression is then used to give the values of µ and S, the mean
and variance of the estimation at every observable pixel. For
a location o ∈ O, µ(o) and S(o) are given by the GP pre-
dictive distribution (Rasmussen and Williams 2006, §2.2).

Figure 6 shows examples of this for two different traffic
video sequences. In 6(a) we see one image from the se-
quence, in (b) we see the vehicle flows, in (c) we see the
flow scaling µ(o) for each pixel in the observed field, and in
(d) we see the variance S(o). This variance is higher where
we have received fewer vehicle flow training vectors.

If required we could calibrate the scaling C(x) by manu-
ally selecting a point and giving its scale.

We monitor only the scale of the flow, and not the direc-
tion in this step. Learning the direction would entail having
to study more complex dynamics such as vehicles crossing
at an intersection, where the distribution of directions would
be multimodal. An extension would be to look at correla-
tions in the flow to calculate the number of lanes, and the
directions in which vehicles move.

Inferring flow rate
We model the dynamics of the flow rate ft as being governed
by

ft = ft−1 + ηt, ηt ∼ N (0, q2) . (3)

That is, we assume that the flow follows a random walk with
variance q2 at each step. A slightly more realistic model
could be made by having this be mean-reverting around a
nonzero value. The dynamics in Eq. (3) could in principle
lead to a negative flow, which would be inconsistent. If this
was a problem in practice we could model the square root
or log of the flow, although this would make inference more
difficult as we would then have nonlinear observations.

We now describe the observation model. At each time
frame t we assume there are nt different vehicle flow obser-
vations yt = yt,1, . . . , yt,nt , each of which is dependent on
the overall flow ft and a noise component. Each observation
yt,i is associated with a location ot,i ∈ O.

The flow observations are distributed according to the
overall flow rate and the scaling field

yt,i ∼ N (ft(Ct)i,1, (Rt)i.i)) (4)

where we have to formulate the observation parameters Ct

and Rt at each time step, depending on the locations of
the observed flow vectors. We use (Ct)i,1 = µ(ot,i) and
(Rt)i,i = S(ot,i), as calculated in the previous section.
The dynamical noise parameter q can be calculated with
expectation-maximisation. The overall generative model is
depicted in Figure 7.

Given this model we can use inhomogenous Kalman filter
equations to infer a mean and variance (f̂t and Pt) of the
estimated overall flow rate through time. Assuming some
initial estimates f̂0 and P0, we first predict the distribution
on the flow rate having the same mean as in the previous

Figure 7: Dynamical model for vehicle flow observations
generated by evolving global flow rate. As the flow rate ft

evolves, at each time frame nt flows are generated from it
(positions illustrated in the upper plane), and scaled accord-
ing to the observation field (depicted in the lower plane) to
give the observations.

time frame but with increased variance:

ŷ−t = ŷt−1 (5)

P−t = Pt−1 + q2 . (6)

The update equations then take into account the observed
flows, and the associated measurement variance. The rest of
the steps to complete the estimate are

ỹt = yt −Ctf̂
−
t (7)

Kt = P−t C>t
(
CtP

−
t C>t + Rt

)−1
(8)

f̂t = f̂−t + Ktỹt (9)

Pt = (I−KtCt)P−t (10)

These expressions differ from the standard Kalman filter
equations only in that Ct and Rt change at each time step.

Inference on sample data
We show the results of inferring flow rate in Figure 8. Here
we took two short video sequences (180 frames at 3 frames
per second) in which traffic flow was visibly changing. Af-
ter learning the scaling field, we applied the inference recur-
sions in Eqs. (5-10). We can see these changes in the esti-
mated flow. In the first example, traffic was regularly speed-
ing up and slowing down at an intersection. In the second
example, passenger carrying vehicles pulled into the side of
the road periodically, interrupting the flow of the traffic.

Discussion
In this paper we have discussed solutions to the problem
of traffic congestion monitoring in a developing-world city
where traffic scenes have a high degree of clutter. This is
done by modelling an observed lane of traffic as a single
moving entity with an overall rate of flow. By classifying
feature descriptors we can incorporate the flows of vehicles
without being affected by the flow of non-vehicle objects.

(a) (b) (c) (d)

Figure 6: Inferred observed field for different video sequences. (a) Initial frame in sequence, (b) the first 100 vehicle flows
found in the sequence, (c) the observation field, lighter shades indicating that vehicles travel faster within that region, (d)
the corresponding variance, lighter shades indicating greater uncertainty. The more vehicle flows we observe, the greater the
precision with which we can reconstruct the observation and road geometry.

0 20 40 60 80 100 120 140 160 180
0.6

0.8

1

1.2

f
t

t

(a)

0 20 40 60 80 100 120 140 160 180
0.6

0.8

1

1.2

1.4

1.6

f
t

t

(b)

Figure 8: Estimated flow rates in two different video se-
quences. (a) Traffic speeds up and slows down periodically
near an intersection; (b) traffic flow changes as buses and
minibus taxis pull in to the side of the road to let passengers
on and off. The shaded areas show two standard deviations
of the estimated distribution.

This work takes us closer to our overall aim of dynami-
cally mapping the congestion of Kampala’s city centre us-
ing its network of around 50 cameras. Our work on extract-
ing information from traffic video streams could also fit into
higher level work on traffic prediction and monitoring (see
e.g. (Horvitz et al. 2005)).

Our Matlab implementation takes a few seconds to pro-
cess each frame, whereas real time is three frames per sec-
ond. Where processing power is limited, such as when deal-
ing with many video streams simultaneously, we envisage
periodically processing video streams (for example process-
ing a 1-minute sequence every 15 minutes).

Future work includes calculating road geometry more
thoroughly, to deal with separate lanes each with their own
flow, and intersections where the direction of flow might
change. Also, much recent work on traffic monitoring has
been looking not at rates of flow but on detecting unusual oc-
currences on the roads. Uganda Police currently use CCTV
for such a purpose, looking out for accidents or dangerous
driving, so it would also be interesting to adapt our system to
detect unusual behaviour on the road, by looking for vehicle
flows which are unlikely under the model.

Finally, the different probabilistic elements in our current
system are decoupled – for instance, our state of certainty
about whether a flow is associated with a vehicle or not is
lost when we make a hard decision before going on to the
next stage of inferring the observed geometry. Better results
could be expected if we could use one model to represent a
joint distribution over all these variables.

Acknowledgments
Thanks to Yusuf Ssewanyana and Uganda Police for provid-
ing advice and access to their CCTV systems.

References
Horvitz, E.; Apacible, J.; Sarin, R.; and Liao, L. 2005. Pre-
diction, Expectation, and Surprise: Methods, Designs, and
Study of a Deployed Traffic Forecasting Service. In Pro-
ceedings of the 21st Conference on Uncertainty and Artifi-
cial Intelligence.
Kastrinaki, V.; Zervakis, M.; and Kalaitzakis, K. 2003. A
survey of video processing techniques for traffic applica-
tions. Image and Vision Computing 21:359–381.
Lowe, D. 2004. Distinctive image features from scale-
invariant keypoints. International Journal of Computer Vi-
sion 60(2):91–110.
Maurin, B.; Masoud, O.; and Papanikolopoulos, N. 2002.
Monitoring Crowded Traffic Scenes. In Proceedings of the
5th IEEE International Conference on Intelligent Trans-
portation Systems.
Maurin, B.; Masoud, O.; and Papanikolopoulos, N. 2005.
Tracking All Traffic: Computer Vision Algorithms for
Monitoring Vehicles, Individuals, and Crowds. IEEE
Robotics and Automation Magazine 12(1):29–36.
Messelodi, S.; Modena, C. M.; and Zanin, M. 2005. A
computer vision system for the detection and classification
of vehicles at urban road intersections. Pattern Analysis
and Applications 8:17–31.
Porikli, F., and Li, X. 2004. Traffic Congestion Estimation
Using HMM Models Without Vehicle Tracking. In Pro-
ceedings of the 2004 IEEE Intelligent Vehicles Symposium.
Posta, F.; Vrolijka, B.; Hauserb, H.; Larameeb, R.; and
Doleisch, H. 2003. The State of the Art in Flow Visualisa-
tion: Feature Extraction and Tracking. Computer Graphics
Forum 22(4):1–17.
Rasmussen, C., and Williams, C. 2006. Gaussian Pro-
cesses for Machine Learning. MIT Press.
Sun, Z.; Bebis, G.; and Miller, R. 2006. On-Road Vehi-
cle Detection: A Review. IEEE Transactions on Pattern
Analysis and Machine Intelligence 28(5):694–711.
Tan, E., and Chen, J. 2007. Vehicular Traffic Density
Estimation via Statistical Methods with Automated State
Learning. In Proceedings of the 2007 IEEE Conference on
Advanced Video and Signal Based Surveillance.
Zhang, W.; Fang, X.; and Yang, X. 2005. Moving vehicles
segmentation based on Bayesian framework for Gaussian
motion model. Pattern Recognition Letters 27(9):956–967.

