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Abstract

With the increased availability of rich behavioral data
sets, we present a novel combination of tools to ana-
lyze to analyze this information. Using criminal offense
records as an example, we employ cross-correlation
measures, eigenvalue spectrum analysis, and results
from random matrix theory to identify spatiotempo-
ral patterns. Finally, with multivariate autoregressive
models, we demonstrate a possible source of structure
within the data. instructions.

Introduction
There is an enormous amount of behavioral data generated
and stored by billions of individuals across countries and
cultures. It has become necessary to develop novel quantita-
tive tools to analyze this immense and rich stream of infor-
mation. The goal is to use the data in order to gain a better
understanding of the systems that generate it. This will in-
form fields from economics to sociology as well as provide
policy makers with critical answers that may be used to bet-
ter allocate scarce resources or implement beneficial social
programs. In this paper, we present a novel combination of
tools and analytical techniques that may be used to identify
patterns and signals that capture fundamental dynamics of
a social system. Cross and auto-correlation measures are
combined with autoregressive models and results from ran-
dom matrix theory to examine lead-lag relationships in be-
havioral time series.

The data set used in the course of this study is made up of
criminal activity within the City of Philadelphia during the
year 1999. For the roughly two hundred thousand crimes re-
ported, we examine spatial, temporal, and incident informa-
tion. The goal of our analysis is to explore the spatiotempo-
ral dynamics of criminal behavior with the hope of identify-
ing patterns that may be useful in predicting and preventing
future criminal activity.

Existing work from the fields of criminology, sociology,
psychology, and economics tends to explore relationships
between criminal activity and socioeconomic variables such
as education, community disorder, ethnicity, ect. (Weisburd,
Bruinsma, and Bernasco 2009), (Lafree 1999). In general,

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

constraints on the availability of data meant these studies
were limited to aggregate statistics for large populations and
vast geographic regions. Wilson and Kelling’s article in the
March, 1982 edition of The Atlantic popularized “Broken
windows” and “social disorganization” theories, for the first
time, explicitly introducing flow and dynamics into crime
research. These theories proposed that crime was a conse-
quence of urban decay and lack of community ownership in
neighborhoods (Kelling and Wilson 1982). Neglected areas
not only attract criminals (the neglect is a sign of lack of po-
lice presence), but also act as a feed-forward mechanism by
damaging community moral.

More recently, attempts have been made to study crime on
the neighborhood level, exploring crime “hot spots” (Samp-
son, Raudenbush, and Earls 1997). Some studies have even
shifted focus from high crime areas to high risk people,
tracking individuals for a period of time and assessing their
propensity to commit crime and its relationship to various
socioeconomic indicators (Krivo and Peterson 2000). These
studies tend to be small in size and very labor intensive, re-
quiring that neighborhoods be surveyed and tracked for long
periods of time.

In this research we address a gap. Statistical methods have
been used to characterize large, aggregate data sets over long
periods of time, while sociological studies have been per-
formed at micro scales. There remains a need for a high res-
olution quantitative analysis of large crime data sets. Using
offense reports generated by a police department, we explore
how crime here and now affects crime there and then, while
also focusing on building a general set of tools to analyze
behavioral data sets for spatiotemporal systems.

Data
Representing nearly all reported crimes within the City
of Philadelphia, roughly 200,000 criminal events were
recorded at nearly 37,000 unique locations. For each event,
information is available about the time, place, and type of
offense.

The spatial resolution of this data is high enough that a
block/neighborhood analysis of crime is possible. Simply
plotting the geocoded events reveals features of the city such
as the street-grid, parks, bridges, rivers, ect. (FIG. 1). While
the time of each report is known to within the hour, offenses
are generally aggregated to daily or weekly counts, ensur-



ing that time series are sufficiently populated with events. A
time series displaying citywide theft-related crimes reveals
weak seasonal trends as well as singular events such as holi-
days (FIG. 2). Finally, offense report statistics organized by
type of crime can be explored (FIG. 3).

Figure 1: All crimes, major and minor, throughout the city
of Philadelphia during the year 1999. Geographic features of
the city, such as rivers, parks, bridges, ect., are immediately
visible.
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Figure 2: A time series plot of theft crimes. Significant out-
liers can be identified as holidays such as Thanksgiving and
Christmas. Smoothing the data (the red/central line) reveals
weak seasonal trends.

Methods
Conditioning the Data
Our goal is to quantitatively study a behavioral data set. Be-
havioral information must be transformed into variables that
can be manipulated numerically. While time and place read-
ily lend themselves to such analysis, the type of crime being
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Figure 3: A percentage breakdown of different crimes based
on incident reports.

reported must be inferred from its police description. Crimes
were aggregated into six broader categories by parsing re-
ports for keywords as described in Table 1. Aggregation en-
sures that there are sufficient numbers of events to populate
time series, while still making use of nearly 75% of the avail-
able data. A lattice is laid over a map of the city and crimes

Table 1: Categorical groupings of different crime types.

Category Offenses Included Crimes (%)
All all reported offenses 211606 (100%)

Automobile auto theft, major traffic 16005 (7.6%)
Theft burglary, robbery, auto 80290 (38%)

Violent assault, homicide, gun 29908 (14%)
Vandalism vandalism, graffiti 17880 (8.5%)

Drug possession, sale, DUI 11642 (5.5%)

are aggregated to the nearest grid point. In general, any mesh
size can be used; our analysis is performed with 80-120 grid
locations across the city. This spacing roughly corresponds
to neighborhood and census track sizes, allowing for possi-
ble comparison to demographic census tract data. For every
lattice point, a time series is constructed for each category
listed above. In most cases, the entries of time series are
the number of crimes at that location during a 24 hour pe-
riod, though weekly time series are constructed in certain
instances. Finally, time series are normalized to have zero
mean and unit variance. Overall, the time series produced
are stable and stationary, having roughly constant mean and
variance over the year. Any seasonal effects are weak at best.

Tools and Techniques
Using the conditioned data, we will develop analytical tools
to achieve the following:

1. Identify both spatial and temporal relationships.



2. Assess the significance of these relationships.

3. Provide insight into their source.

To address these goals, we combine time series analysis
with results from random matrix theory to quantify the mag-
nitude and significance of correlation in the data. In the pro-
cess, we draw upon knowledge of similar problems found in
neuroscience (correlating spike-train data) and financial eco-
nomics (finding signal in noisy time series data) (Kamiński
et al. 2001), (Mayya and Santhanam 2007), (Tumminello,
Lillo, and Mantegna 2008), (Laloux et al. 1999) . Finally,
we present a reasonable source explaining observed patterns
and suggest further research that may reveal deeper trends.

Correlation In Time: We begin analysis by looking for
correlations in time. We first select two time series, y1 and
y2, from the conditioned data. These time series may come
from two different lattice points (so as to correlate points in
space), or correspond two different crime types at the same
lattice point (assessing lead-lag relationships between spe-
cific kinds of criminal activity).

The cross-correlation, r1,2, is a measure of similarity be-
tween a pair of time series. Mathematically, this quantity
is defined as the expectation of the inner product between
the two time series: r1,2 = E[〈y1,y2〉] =

∑n
t=1 y1(t)y2(t).

Similarly, it is possible to determine lagged correlation by
shifting one series by a number of lags, m. The lagged cross-
correlation, r1,2(m), is given by modification to the previous
formula, r1,2(m) =

∑n
t=1 y1(t+m)y2(t).

For our normalized time series, cross-correlation values
lie between −1 and 1, where r1,2 = 1 is corresponds to ex-
act correlation between two time series. A cross-correlation
sequence is defined as the sequence of cross-correlation val-
ues over a range of lags. Examining the cross-correlation se-
quence for two time series, we can identify the existence of
a significant relationship as well as quantify its power over a
number of lags. Not only can these measures detect the flow
of crime from one area to another, they can also quantify its
speed and direction. An example of such measures can be
found in FIG. 4.

Correlation in Space: Comparing time series for all pairs
of locations across the city, we form a K × T matrix, Y,
where K is the number of time series we wish to correlate
and T is the length if each time series. The delayed correla-
tion matrix for a specific lag m, C(m), is then constructed
by matrix multiplication C(m) = 1

T YYT (m), where T is
a regular matrix transposition. The elements of C are given
by Cij(m) =

∑T
t=1 yi(t)yj(t +m). Note that m = 0 cor-

responds to zero lag.
For example, we wish to test for correlations in drug re-

lated offenses between different neighborhoods across time.
Conditioning the data as described above, time series are
constructed for 35 lattice points (neighborhoods) and the
cross-correlation matrix is constructed (FIG. 5). Entry Cij

of this matrix represents the cross-correlation between the
time series of drug related crimes from locations i and j.
Examining this matrix we first note that no patterns or re-
gions of high correlation are immediately visible. The la-
beling of neighborhoods is such that locations i and i + 1
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Figure 4: The cross-correlation sequence of two generated
time series. Time series y1(t) was generated randomly while
y2 is a linear combination of values of y1(t− 12) and white
noise. The blue (solid) line represents the actual cross-
correlation sequence while the green (dotted) lines represent
3σ significance tests.

are also close spatially. The unstructured correlation matrix
suggests that neighborhood crime levels may not be corre-
lated spatially. This example, though, does not consider any
lagged correlations that may exist between locations. Con-
structing matrices for lagged cross-correlation of up to 30
days (1 month), however, reveal similar results. We do not
find any immediate spatial correlation structure or flows in
the data.

Figure 5: The zero lag correlation matrix for drug related
crimes. There appears to be little spatial correlation and a
lack of high correlated locations.

Correlation by Type: Cross-correlation methods may
also be used to look for relationships between crimes. We
may ask if an increase in theft related crimes leads to vio-
lent crimes in the future. For a given node, we create a time



series for each type of crime. Next, we construct the cross-
correlation sequence for this pair of series across a number
of lags (in most cases lags up to 30 days were included). To
visualize these correlations we create a matrix where each
column represents the cross-correlation sequence for a given
location (FIG. 6).

As an example, we have included automobile thefts in
both the “Thefts” category and the “Automobile” category.
Unsurprisingly, we see significant correlation between the
two crime types at exactly zero lag. The lack of significant
correlation for other time lags indicates no other significant
relationships where theft in one location leads to violence in
that same location at a later time.
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Figure 6: A matrix displaying significant lagged cross cor-
relations between automobile crimes and theft crimes. Be-
cause automobile crimes are counted in both categories, we
find correlation at zero lag, but almost no other significant
relationships.

Significance: Across each crime category, we find few
visible spatial or temporal correlations. Given that no im-
mediate structure is present, our goal is to assess the signif-
icance level of cross-correlation values to differentiate be-
tween real and random connections. To achieve this, we cre-
ate a null model for each pair of time series by randomizing
the series and computing a new cross-correlation value. Re-
peating this process 500 times, we construct a distribution of
cross-correlation values from which confidence intervals can
be constructed. If the cross-correlation between the original
time series deviates from the random distribution at a given
confidence level, we consider it significant. Performing this
analysis, however, we find no significant correlation struc-
ture in the criminal data.

Given the random nature of our findings, we again turn to
work done on analogous systems. Similar problems involv-
ing noisy time series are routinely found in fields such as
financial economics (markets. stocks, equities, ect.) and cli-
mate forecasting (Tumminello, Lillo, and Mantegna 2008),
(Laloux et al. 1999). Work in these areas suggests that
the correlation structure of systems can be characterized
by examining the eigenvalue spectra of correlation matri-
ces. Much success has been found testing the significance

of these metrics using results from random matrix theory
(RMT).

To test for non-random structure in our correlation matri-
ces, we consider two related groups of matrices, Gaussian
and Wishart. Entries of a Gaussian matrix are drawn from
a standard normal and a Wishart matrix, W, is formed by
matrix multiplication of a Gaussian matrix, G, and its trans-
pose, W = GGT (Edelman 1988). The key observation is
the direct analogy between formulation of the Wishart ma-
trix and cross-correlation matrix. We use these random ma-
trices as null models to our cross-correlation measures.

Various analytical results for the distribution of eigenval-
ues of a random Wishart matrix can be found in (Edelman
1988), (Sengupta and Mitra 1999), (Utsugi, Ino, and Os-
hikawa 2003). The eigenvalue density, ρ(λ), is defined as
the number of eigenvalues below λ. Given a correlation ma-
trix whose entries are drawn from the standard normal dis-
tribution, the eigenvalue density as K and T go to infinity is
given by the Marcenko-Pastur Law,

ρ(λ) =
Q

2π

√
(λmax − λ)(λ− λmin)

λ
(1)

where Q = T/K ≥ 1 and λmax
min = 1 + 1/Q ± 2

√
1/Q

(Laloux et al. 1999). In other words, we can establish signif-
icant correlation structure by comparing eigenvalue spectra
from the data to those of a random null model. If we find
eigenvalues significantly outside theoretical thresholds, we
can conclude there is signal buried in the data. For exam-
ple, the largest eigenvalue (and corresponding eigenvector)
in the case of financial data is identified as the “market” fac-
tor, having equally weighted components. Mayya et. al.
have obtained similar analytical results for lagged cross cor-
relation matrices (Mayya and Santhanam 2007).

Identifying Patterns: Examining the eigenvalue spec-
trum of our data, we do find a weak signal. The spectra cor-
responding to the correlation matrix of drug related crimes
displayed above is shown in FIG. 7. While the majority of
eigenvalues cannot be distinguished from noise, there does
exist a large significant eigenvalue.

Next we examine the spectra for a series of lagged corre-
lation matrices. Plotting the magnitude of the largest eigen-
value for each lagged correlation matrix and comparing this
to the largest value expected from random data, we see
a strong cyclic signal with a period of 7 days. (FIG 8).
This analysis suggests that significant correlation structure
is present on a weekly cycle.

Recreating Patterns We now address the source of this
correlation. Again borrowing from results in financial eco-
nomics, we adopt use of the inverse participation ratio (IPR)
to examine the component structure of the significant eigen-
vectors. The IPR of a vector is given by IPR(~νi) =∑K

j=1 |νij |4 (Biely and Thurner 2006). A large IPR implies
that only a few components contribute to the eigenvector,
while a small IPR indicates participation of many compo-
nents. It is possible to determine clustering structure from
such analysis. For example, in financial data, the eigen-
vector corresponding to the large “market” eigenvalue has



(b)
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Figure 7: (a) Only one eigenvalue, λ1 = 3, can be differenti-
ated from the noise indicated by the red (solid) line. (b) The
green (solid) curve is the eigenvalue density of the actual
matrix spectra while the red (dashed) curve is the theoretical
prediction from eqn. (1).

a low IPR, identifying itself as a force that affects all stocks
equally. Other eigenvectors, however, with larger IPRs have
components that correspond to various sectors of the mar-
ket (Biely and Thurner 2006). For crime data, these com-
ponents correspond to locations across the city so a cluster
of eigenvector components would correspond to a cluster of
neighborhoods.

Examining the IPRs for significant eigenvectors in lagged
correlation matrices, our results show that the eigenvector
corresponding to the largest eigenvalue has a low IPR and
can thus be interpreted as a “market” force. For the re-
maining significant eigenvectors, we find that they too have
low IPRs, suggesting there is little clustering or community
structure (FIG. 9).

Ruling out significant spatial clustering, we suggest pos-
sible temporal sources for the patterns observed in the data.
While multivariate autoregressive models quickly become
intractable if attempting to include crime levels at many lo-
cations across the city, they do provide some insight. Re-
gressing citywide drug offenses on day of the week reveals
significant correlation. Considering only what day it is, we
are able to account for nearly 60% of the variance in daily
drug offenses. Inference from the coefficients in Table 2 is
subtle. With Sunday being the omitted group, coefficients on
dummy variables corresponding to the day being Monday-
Saturday are interpreted as the change in criminal activity
between Sunday and that particular day of the week. Thus
we conclude Sunday’s have the lowest drug-related crime
rates while the middle of the week (Tuesday, Wednesday,
and Thursday) show the highest. This is in sharp contrast to
violent crimes, which show an increase on weekends, drop-
ping during weekdays.

While differences in when types of crime occur are in-
triguing, we focus primarily on the weekly, cyclical pat-
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Figure 8: We plot the maximum eigenvalue of the delayed
correlation matrix for each of 30 lags. For drug related
crimes, we see a very clear periodicity at a frequency of 7
days (1 week).
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Figure 9: A plot of the IPR of the eigenvectors of the delayed
correlation matrix for drug crimes with a 7 day lag.

tern it shows. Using the coefficients from the autoregressive
models and some added noise, we construct a set of time
series to mimic our original data. Calculating correlation
matrices and their eigenvalue spectra, we are able to recon-
struct the significant features of real crime data. Our gener-
ated model successfully reproduces the weekly spikes seen
in the amplitude of the maximum eigenvalue of the sym-
metric lagged correlation matrices (FIG. 8), suggesting this
citywide, weekly cycle is the major component driving cor-
relation.

Summary and Conclusion
In this paper, we have presented a novel combination of
tools that can be used to analyze behavioral data sets. Cross-
correlation measures were used to construct correlation ma-
trices, revealing spatiotemporal relationships involving hu-
man activity. Given a low signal-to-noise ratio, we adopted



Table 2: A regression of citywide drug and violent offenses
on day of the week (R2

drug = .60, R2
viol = .22).

Drugs Violence
Day Coeff. [ 95% Conf] Coeff. [ 95% Conf]

Sunday -1.21 [-1.38, -1.04] 0.52 [0.29, 0.76]
Monday .40 [0.16, 0.64] -1.04 [-1.37, -0.71]
Tuesday 1.94 [1.73, 2.22] -0.82 [-1.16. -0.49]

Wednesday 2.12 [1.88, 2.37] -0.79 [-1.13, -0.46]
Thursday 1.87 [1.62, 2.12] -0.94 [-1.28, -0.61]

Friday 1.39 [1.15, 1.63] -0.37 [-0.71, -0.04]
Saturday 0.73 [0.48, 0.98] 0.24 [-0.09, 0.57]
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Figure 10: The maximum eigenvalue of the symmetric de-
layed cross correlation matrix for each of 30 lags. Gener-
ated data from regression coefficients captures the weekly
periodicity of actual drug related crimes shown in FIG. 8.

results from random matrix theory to construct a suitable
null model to construct significance tests. These tests re-
vealed definite structure in the eigenvalue spectra of our cor-
relation matrices. Finally, we present a method capable of
generating observed patterns.

Given the large portion of crime rates that can be ex-
plained by regressing data onto the day of the week, it is
possible that these results reflect police procedures such as
scheduling more officers on Mondays than Sundays. Dis-
crepancies in daily crime rates for different types of crime,
however, may suggest different types of crime do represent
very different behaviors. Another interesting result from our
analysis is the lack of correlation between these different
crime types. Broken windows and social disorganization
theories postulate that an influx of minor offenses such as
graffiti and vandalism might lead to an increase of more se-
rious crimes such as assaults or gun violence. We find no
evidence of this for spatiotemporal time scales probed here.

This is not to say, however, no relationship exists. We
have only looked for interaction on time scales of up to 30
days. It may be that these types of flows happen on the
monthly or yearly time scale. The length of our time series,

however, limits us. Having recently acquired similar crime
data for the entire decade, we hope to address this issue in
future works.

We are confident, that these methodologies are capable
of capturing patterns and dynamics within behavioral data
sets and can help provide insight into the social systems that
create them.
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